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Theory of Bose–Einstein condensation
for trapped atoms

B y N. P. Proukakis and K. Burnett
Clarendon Laboratory, Department of Physics, University of Oxford,

Parks Road, Oxford OX1 3PU, UK

We outline the general features of the conventional mean-field theory for the descrip-
tion of Bose–Einstein condensates at near zero temperatures. This approach, based
on a phenomenological model, appears to give excellent agreement with experimental
data. We argue, however, that such an approach is not rigorous and cannot contain
the full effect of collisional dynamics due to the presence of the mean-field. We thus
discuss an alternative microscopic approach and explain, within our new formalism,
the physical origin of these effects. Furthermore, we discuss the potential formulation
of a consistent finite-temperature mean-field theory, which we claim necessitates an
analysis beyond the conventional treatment.

1. Introduction

It has been known for many years that the quantum nature of atomic motion can
produce drastic effects on the properties of a gas. At sufficiently low temperatures,
the atomic de Broglie waves of neighbouring atoms in an assembly start overlapping,
giving rise to the quantum statistical effects that discriminate between fermions and
bosons (depending on their atomic spin). The Pauli exclusion principle prohibits
any two fermions from occupying exactly the same quantum state. On the other
hand, bosons are not limited in this way, and an arbitrary number of bosons can
occupy the same quantum state. In fact, when the de Broglie waves start to overlap,
the process of Bose–Einstein Condensation (BEC) occurs, in which bosonic atoms
produce a macroscopic occupancy of a single state, usually the ground state of the
container they are in. An additional and fundamental characteristic of BEC is the
acquisition of a well-defined phase of the whole condensate, in much the same way
that magnetization occurs in the paramagnetic to ferromagnetic transition†.

The process of condensation is driven by the quantum statistics as follows (see,
for example, Burnett 1996). Each collision between atoms results in scattering into
any pair of states allowed by energy and momentum conservation. When, however,
one takes quantum statistics into account, one finds that scattering is enhanced into
those states that already have some atoms in them. This means that once a number
of atoms has ‘condensed’ into the ground state, collisions between the other atoms in
the assembly will tend to increase the number of atoms in that state. This will lead to

† It is worth pointing out that, despite the Pauli exclusion principle, fermions can form stable pairs,
known as Cooper pairs, whose cooperative effect gives rise to the well-known phenomenon of supercon-
ductivity (flow of electric charge in the absence of resistance).
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BEC, provided other processes that produce loss of atoms from the condensate do not
dominate. The precise details of the onset of BEC are still a matter of research. What
is, however, undisputed is the fact that the phenomenon occurs when the assembly
is sufficiently cold and dense for the atomic waves to overlap with each other.

BEC has now been achieved in a variety of atomic alkali systems (Anderson et
al. 1995; Davis et al. 1995; Bradley et al. 1995). The experimental techniques use a
combination of laser beams and evaporative cooling to create sufficiently high phase
space density for condensation to occur. In the next section we will briefly explain
why alkali gases are excellent systems for studying BEC. We will then outline the
conventional theoretical approach for describing such condensates, which appears
to give excellent agreement with experiments. Finally, we shall discuss potential
limitations of this theory (see also Proukakis et al. 1997) and outline a theoretical
framework in which they can be overcome.

2. Quantum statistical effects versus interactions

We have already argued that BEC is due to quantum statistical effects and would
therefore also occur, in principle, in an ideal (i.e. non-interacting) gas. However, a
realistic description of experiments necessitates us taking the interactions of ultra-
cold atoms into account. The interplay between interactions and quantum statistical
effects is a rather important one for BEC, since the effects of interactions can strongly
modify the quantum statistical effects, as happens in the case of liquid helium (see,
for example, Sokol 1995). In this system, as has been known for a long time, the λ
transition (experienced at temperatures below 2.17 K) gives rise to the simultaneous
existence of a ‘normal’ fluid (just as the ones to which we are accustomed) as well
as a superfluid, the latter having the unique feature that it flows without viscosity.
Although BEC is believed to play an important role in this behaviour, one cannot
simply identify the superfluid component with a condensate (Huang 1995). The rea-
son for this is that helium atoms interact extremely strongly with each other, making
an identification of pure quantum statistical effects very hard.

For a long time it was unclear whether one could unambiguously observe a con-
densate in which the quantum statistical effects were not masked. For this reason,
experimentalists have looked for ways to achieve ‘pure’ BEC in a weakly interact-
ing gas. Until recently, most efforts have been focused on spin-polarized hydrogen
(Silvera & Walraven 1980), coming very close to the BEC transition (Greytak 1995;
Silvera 1995). Although BEC has not yet been achieved in this system, these efforts
created very powerful tools (e.g. evaporative cooling) that where adopted in the
experiments with laser-cooled trapped alkali systems, which have recently generated
the first weakly interacting condensates (Anderson et al. 1995; Davis et al. 1995;
Bradley et al. 1995).

One might ask why alkali gases are good systems for studying BEC. Experimental-
ly, this is so because they can be laser-cooled to temperatures in the µK region. This
is based on subDoppler cooling methods (Castin et al. 1995) that rely on the ground
state hyperfine structure and provide the starting point for evaporative cooling (Ket-
terle & van Druten 1996) that is used to cool the gas to even lower temperatures.
When the temperature decreases to about a few hundred nK, BEC occurs in suf-
ficiently dilute samples, which allow a clear observation of the quantum statistical
effects. This is, of course, very appealing to theoreticians, as it means we can use
simple weakly interacting Bose-gas theory and make direct predictions for the exper-
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iments. The weakly interacting Bose-gas theories were first developed in the hope of
explaining the features of liquid helium, which they actually succeded in a qualitative
rather than a quantitative way.

The temperature, Tc, at which the BEC transition takes place, does not differ
greatly from the ideal gas predictions, confirming that the interactions are not strong-
ly modifying the phenomena. This may seem perplexing at first, when one compares
the translational energy of the cooled alkalis, in the µK range, with the energy of the
chemical bond between two alkali atoms which is a few orders of magnitude higher.
Indeed this poses a limitation on the lifetime of the condensate, due to the three-
body recombination rate (see, for example, Tiesinga et al. 1992). In this process,
three-body collisions produce bound molecules and an energetic atom, both of which
escape from the trap. However, on the short timescales in which experiments are
performed (a few seconds for current condensates), one can consider the atoms as
weakly interacting, with the dominant process being that of elastic binary collisions.
To understand how this is possible, we need to remember that the atoms are at such
low temperatures that their de Broglie wavelengths are huge compared to the range
of the interactions. This means that the net effect of the interactions on the atom-
ic properties at large distances can be replaced by a simple shift in the atomic de
Broglie wave. Hence, we can model the ultracold alkali interactions as hard-sphere
interactions, where the radius of the hard sphere is exactly this above shift in the
de Broglie wave. This shift, known as the s-wave scattering length is typically of the
order of a few tens of Bohr radii, i.e. a few nm for the heavier alkalis. Experimental
measurements of scattering lengths have been made for most alkali systems (see, for
example, Tiesinga et al. 1996). Since the scattering length is so small in comparison
to the de Broglie wavelength of the ultracold atoms, the gas is effectively dilute. This
means the effect of interatomic interactions on the gas remains modest and ensures
that the BEC transition is not strongly modified by them.

The interactions do, however, become more important in the condensed phase, as
more and more atoms are preferentially scattered into the ground state of the sys-
tem. For the homogeneous gas, this results in a peak in the momentum distribution,
whereas, in the case of a trap, to a peak in the density of atoms. This increased den-
sity implies that the interactions between the condensed atoms will strongly affect
the properties of the condensate as well as its interaction with the non-condensed
particles. Nonetheless, the range of the interactions remains extremely small com-
pared to the de Broglie wavelength or the interparticle spacing, so that we might
expect to be able to treat the ultracold collisions using a scattering length model.
Mathematically, this means that we can simplify the spatially dependent interaction
potential between two ultracold alkali atoms into that of a zero-range delta-function
potential (see, for example, Huang 1987)

V (r) = U0δ(r). (2.1)

Here U0 represents the effective interaction strength for zero-range interactions,
which is related to the s-wave scattering length, a, by U0 = (4π~2a)/m, where m
is the atomic mass. Approximating the potential in the form (2.1) enables us—as
will become clear below—to make a direct link between theory and experiment.
The scattering lengths used in calculations have been found in other spectroscopic
determinations. Approaches based on this potential, along with the Gross–Pitaevskii
equation we shall now discuss, have given impressive results. There are, however, as
we shall see, some serious conceptual difficulties with the microscopic basis of the
calculation.
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3. The Gross–Pitaevskii equation for the condensate wave function

In order to describe the evolution of a trapped condensate, we shall use mean-field
theory. Consider the motion of an atom in an interacting Bose-condensed assembly.
Since the atoms are Bose-condensed, that is they exist in the same quantum state,
they can be thought of as acting coherently on our single atom. Thus, our atom is
not aware of the individual behaviour of each atom in the assembly and behaves
dominantly as if it were moving through the condensate mean-field.

Let us consider the time dependence of the wave function Φ(r, t) of an atom in
the condensate. The use of mean-field theory as described above, along with the
interaction potential of equation (2.1) give the following equation for the evolution
of this single-particle wave function:

i~
∂Φ(r, t)
∂t

=
(
−~

2∇2
r

2m
+ Vtrap(r)

)
Φ(r, t) +NU0|Φ(r, t)|2Φ(r, t). (3.1)

The first term in the above equation describes the free evolution of the atom in a
trapping potential Vtrap(r). The second term expresses the coherent action of all
other condensate atoms on the particular atom under consideration, i.e. the effect of
the condensate (or Hartree) mean-field, and N corresponds to the number of atoms
in the condensate. Now let us assume that our system is cooled to temperatures so
close to absolute zero and that effectively all atoms in the assembly are condensed. In
this case, all atoms in the condensate will be described by this same wave function,
which we can term the wave function for the condensate. This last step of assigning
the single-atom wave function to describe the coherent effect of the whole assembly
is, however, not exact. The reason for this is that even at T = 0, the interactions
between the atoms will cause a depletion of the condensate (Lifshitz & Pitaevskii
1980).

The depletion of the condensate can be understood in both a particle and a quan-
tum field theory point of view. Let us look at the particle point of view first. The idea
of assigning a single wave function for all the particles means that the probability
of finding a particle in a given region is independent of the position of any other
particle in the assembly. This approximation clearly has to fail in the region where
two atoms approach within the range of their mutual molecular interactions. One
would therefore expect a depletion of the pure uncorrelated condensate wave function
that would depend on the mean number of atoms that find themselves within the
range of influence of a neighbouring atom. This means we might expect, and we do
indeed find, that the depletion depends on na3 (Lifshitz & Pitaevskii 1980), where
n corresponds to the condensate number density.

In the case of liquid helium this depletion is so large (around 90%), that a mean-
field approach cannot be used to obtain quantitative results. For the case of the
alkali condensates produced to date, we can thus use typical values (for heavy alkalis
a ∼ 5 nm and n ∼ 1014 cm−3) to estimate the depletion to lie in the 1% range.
Actually, it is possible to calculate this more precisely. A recent theoretical study
(Hutchinson et al. 1997) of the T = 0 depletion in the case of 2000 Rb atoms† in an
isotropic trap has shown this depletion to be of the order of 0.5%, a truly negligible
figure. Thus, we are justified in identifying the wave function of a single atom with

† This study corresponds roughly to the first experimental observation of BEC at JILA (Anderson et
al. 1995), although we stress that the JILA TOP trap was actually anisotropic.
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that of the whole condensed assembly, which enables us to study the evolution of
the condensate mean-field. We should point out that this can only be valid to order
1/N , N being the total number of particles in the condensate.

Equation (3.1) is known as the Gross–Pitaevskii or nonlinear Schrödinger equation
(Ginzburg & Pitaevskii 1958; Gross 1963). It has been used very widely in determing
the properties of Bose-condensates at near-zero temperatures and appears to provide
excellent predictions for relevant experimental observations (see Ruprecht et al. 1995,
1996; Edwards et al. 1996a,b,c; Dodd 1996; Dodd et al. 1996; Jin et al. 1996; Mewes
et al. 1996; Stringari 1996, etc.). Nonetheless, examination of its microscopic basis
(Proukakis & Burnett 1996a; Proukakis et al. 1997) casts doubts on its validity in
certain regimes, as we shall explain shortly. In the quantum field theory picture
of condensation, the Gross–Pitaevskii equation can be thought of as the equation
expressing the evolution of the mean value of the field operator for the bosonic atom
field. The fluctuations from this mean value then represent fluctuations in the mean-
field.

The finite depletion mentioned above implies that even at T = 0, there are still
some atoms which are not in the condensate, due to the interactions between them.
In all theoretical treatments, we assume that there is a well-defined condensate mean-
field and that these excited atoms, or excitations, move in the presence of the conden-
sate. This technique of assuming a well-defined (condensate) mean-field and splitting
off the remaining effects due to elementary excitations around it is common to the
treatment of many systems with a broken symmetry (e.g. in the case of BEC, the
condensate is a broken symmetry state).

Naturally, we expect the presence of a condensate mean-field to affect the spectrum
of the elementary excitations of our bosonic gas. The reason for this is that the atoms
are not interacting with other individual atoms, but are moving dominantly in the
presence of a coherent condensate field. As expected, the deviation from the non-
interacting spectrum becomes more pronounced, the larger the number of particles
added to the condensate. The notion of an excited atom interacting with condensed
atoms leads quite naturally to the idea of a quasi-particle. One can see the significance
of the change in the spectrum by looking at the quasi-particle dispersion relation in
the case of a homogeneous (i.e. free) condensate, namely (Lifshitz & Pitaevskii 1980)

~ωk =
√
ε2k + 2nU0εk, (3.2)

where εk = (~2k2)/2m corresponds to the non-interacting energy spectrum and n to
the condensate number density. Clearly, in the case of small condensate densities, the
contribution of the second term is rather small and a quasi-particle identically reduces
to a particle in the absence of condensation. The same is true for large momenta k,
where the first term dominates; the physical justification here is that these atoms are
moving too fast to be influenced by the condensate mean-field. However, for small
k, i.e. slower speeds, the second term becomes increasingly important, resulting in a
phonon-like spectrum for small k. This can be physically explained by the fact that
all atoms start in the same state (the condensate), so that any attempt to disturb a
single one of them, results in a coherent disturbance of all of them.

In the inhomogeneous case, the excitation spectrum can be determined by means
of the Gross–Pitaevskii equation by linearizing around the ground state φg of the
condensate, according to (Ruprecht et al. 1996)

Φ(r) = φg(r) + uλ(r)e−iωλt + vλ(r)e+iωλt. (3.3)
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In this method, we treat excitations out of the condensate as ripples of frequency ωλ
on top of it. The spatially dependent coefficients uλ(r) and vλ(r) express the amount
of quasi-particle dressing and depend on the strength of the interactions. In the limit
of excitation energies much larger than nU0, vλ(r)→ 0 and uλ(r) goes over to being
the eigenfunction of the free simple harmonic oscillator.

This linearization technique, well known from response theory, is equivalent to
the more formal one of diagonalizing the Hamiltonian of the system by means of a
transformation to quasi-particles (Edwards et al. 1996a). The set of equations we thus
obtain from these methods determine the shapes and frequencies of the excitations of
the condensate. Simulations done for the Rb condensates in the JILA TOP trap using
this method have given predictions which agree with the experimental measurements
to within 5% (Edwards et al. 1996c), an extraordinary feat given the simplicity of this
approach. Furthermore, we wish to point out that the predictions agree very well with
predictions based on a hydrodynamic approach (Stringari 1996) in the appropriate
large condensate limit. This excellent agreement has generated a lot of confidence in
the use of mean-field theory, and its possible extension to finite temperatures.

So far we have indicated that the Gross–Pitaevskii equation gives excellent pre-
dictions for the excitations of Bose–Einstein condensates. However, the theory is
extremely simple and can only be used at temperatures very close to absolute zero.
Furthermore, damping processeses which have now been observed in experiments
(Jin et al. 1997) are not included in it. Recent work has focused on the development
of mean-field theory valid at finite temperatures, and we shall discuss how we have
gone about deriving such a theory.

4. Microscopic mean-field theory

The Gross–Pitaevskii equation has been widely applied in a variety of different sit-
uations. Nevertheless, the discussion of its validity regime in the literature is rather
limited. The limitation to T = 0 is clear, but there are other issues that need atten-
tion. In order to investigate other limitations of this theory, we have extended mean-
field theory by considering fluctuations around the pure condensate mean-field and
their temporal evolution for trapped atoms (Proukakis & Burnett 1996a)†.

The conventional approach of equations (2.1) and (3.1) is essentially a phenomeno-
logical one. In our treatment, however, we have looked at the system on the micro-
scopic scale and examined the detailed effect of collisions taking place in the system.
In this way, we have developed a mean-field theory for both zero and finite temper-
atures (Proukakis et al. 1997). Let us initially consider our microscopic approach at
T = 0, which enables us to examine the limitations of the Gross–Pitaevskii equation.

(a ) T = 0 mean-field theory and the T matrix
In a dilute Bose gas near T = 0, most of the atoms are in the condensate. It

is thus reasonable to focus our theoretical treatment on the interactions between
pairs of condensed atoms. The interaction potential will promote pairs of atoms
out of the condensate and, once excited, they may reinteract with each other. The
result of this second ‘single-vertex’ interaction varies: the atoms can either fall back
into the condensate, or make a transition to different non-condensate states. This

† We would like to point out that some effects of these fluctuations have also been considered by Stoof
(1992) and Biljsma & Stoof (1997), who came to similar conclusions to ours.
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‘single-vertex’ interaction can be repeated an arbitrary number of times, before the
collision ends, with both atoms occupying condensed states once again. A completed
collision, or scattering, in which both initial and final collisional states are condensed,
is therefore made up of an arbitrary number of intermediate excited-state pairs,
interacting via a ‘single-vertex’ interaction V (r).

A microscopic treatment which includes fluctuations around the pure condensate
mean-field can be shown to include the effect of all repeated ‘single-vertex’ interac-
tions, thus accurately describing the scattering of two condensed atoms in a dilute
trapped condensate at T = 0. In other words, the interaction potential between two
condensate atoms gets ‘renormalized’ to the two-body T matrix, which accounts for
the full effect of a completed collision (in vacuum).

We would like to stress, however, that it is precisely the fluctuations around the
condensate mean-field which cause this ‘renormalization’ of the interaction poten-
tial from the ‘single-vertex’ V (r) to the T matrix. The effect of such fluctuations
are assumed to be negligible in the simplest conventional derivation of the Gross–
Pitaevskii equation. In this approach to the Gross–Pitaevskii equation, one takes in
effect a ‘single-vertex’ interaction with both initial and final states being in the con-
densate (i.e. the most trivial collisional process that can occur). Such an approach
clearly cannot treat the evolution of the collision via intermediate states, and we
shall argue that this is where the most interesting collisional dynamics occur. To
overcome this problem, one conveniently makes the assumption, flawed in our opin-
ion, that this ‘single-vertex’ interaction in the Gross–Pitaevskii equation treats fully
the condensate–condensate scattering process. The reason why this last step is flawed,
is that the only way to upgrade the ‘single-vertex’ interaction to a completed colli-
sion (i.e. V (r) → T matrix) is by suitable treatment of the fluctuations around the
condensate mean-field, and yet the conventional derivation of the Gross–Pitaevskii
equation disregards these very fluctuations as negligible (e.g. Nozières & Pines 1990).

The intermediate collisional states treated by these fluctuations will, however, be
modified due to the fact that the atoms are not colliding in vacuum, but in the
presence of a condensate, and such modifications can only be taken into account by
a microscopic treatment of the fluctuations. The presence of such additional inter-
mediate processes invalidates the claim that any corrections on the Gross–Pitaevskii
equation are purely those due to deviations from the dilute gas limit.

We want to stress that it is only the completed atom–atom scattering process
in vacuum which can be accurately described by the two-body T matrix and its
approximate replacement by a δ function. The validity of such an approximation has
been discussed elsewhere (Proukakis et al. 1997; Huang 1987). If it were true that
such a condensate–condensate collision could be accurately represented in vacuum,
then our treatment to this point would merely put the Gross–Pitaevskii equation on
firm microscopic basis†. In what follows, we shall deal with the effect of the atomic
medium on the binary collisions and explain why these effects cannot be ignored.

(b ) Finite temperature mean-field theory
(i) The many-body T matrix

We have discussed earlier how the scattering of two condensate atoms proceeds via
a sequence of excited-state pairs. In the T = 0 limit, we can, to a good approxima-
tion, treat those intermediate states as empty. When, however, the temperature of

† This would be somewhat similar to the work of Beliaev (1958) and Popov (1987).
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the atomic assembly is increased, atoms will be thermally excited to non-condensate
states. We have already mentioned that the nature of bosonic statistics implies
enhanced scattering into occupied states. Thus the condensate–condensate scatter-
ing amplitude will also be modified due to this occupation of excited states through
which the scattering proceeds. This means that the effective interaction, mentioned in
the previous section, is now represented by the many-body T matrix which explicitly
takes account of the occupation of the intermediate collisional states‡.

In the case of repulsive interactions, the modification from the two-body to the
many-body T matrix in three dimensions is modest, except close to the transition
temperature. Close to Tc, Bijlsma & Stoof (1996) have shown, however, that it causes
a profound renormalization of the T matrix. In the case of attractive interactions,
the many-body T matrix can diverge, signalling the onset of a BCS transition in
the gas (Stoof 1994). In both of these cases, diluteness does not prevent the effects
setting in.

(ii) The mean-field of thermally excited states
The population in excited states also produces a mean-field which will modify the

evolution of condensed atoms. We would thus expect an additional term in equa-
tion (3.1), depending on both the amount of excited state population, and the con-
densate mean-field.

In order to obtain a consistent theory, this condensate-excited state interaction
should be described by the many-body T matrix. However, this can only be brought
into the equation (Proukakis et al. 1997) by considering even more complex fluctua-
tions around the condensate mean-field (corresponding to three-body interactions).
This implies that the use of finite temperature mean-field theory for condensate
evolution can only be consistent when one goes beyond the conventional (Hartree–
Fock–Bogoliubov or HFB†) approximation. We believe this inconsistency also affects
the T = 0 limit of the Gross–Pitaevskii equation, because of the finite (but small)
population in excited states.

Let us return to our discussion of the importance of the corrections on the Gross–
Pitaevskii equation due to the fluctuations around the condensate mean-field. In the
chemical potential of the homogeneous gas, the correction is well known to be

µ = nU0 → nU0

(
1 +

32
3

√
na3

π

)
. (4.1)

However, our treatment shows that in order to obtain precisely this correction, we
must not only take account of the effective condensate–condensate scattering‡, but
we must further include the effect of the few non-condensate states present near
T = 0. The correct inclusion of this effect necessitates the consideration of fluctua-
tions beyond the conventional HFB treatment. This suggests that the HFB approach
is, strictly speaking, not sufficient for the description of the condensate, even at T = 0
(although in the case of the weakly interacting systems under consideration, this lim-
itation is really an academic one). At this point, the reader may well be wondering

‡ A more detailed account of the two-body versus the many-body T matrix can be found in the review
article by Stoof et al. (1996).
† For a description of the conventional Hartree–Fock–Bogoliubov theory, see, for example, Kobe

(1968), Dörre et al. (1979) and Huse & Siggia (1982).
‡ In considering the condensate–condensate scattering process, we point out that the ‘renormalization’

of V (r) to the T matrix is implicit in the HFB treatment.
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whether the conventional approach can be made consistent, by means of the micro-
scopic method we have developed.

In fact, when one extends the treatment beyond HFB, one finds that the extra fluc-
tuations play a two-fold role. Firstly, they ‘renormalize’ the condensate-excited states
scattering potential V (r) to an effective T matrix interaction, which has already been
used in obtaining (4.1). However, the beyond-HFB approach also introduces new
physical processes that dress the binary interactions due to the mean-field (Proukakis
et al. 1997). This dressing is additional to that included in the HFB treatment. Hence,
the statement that the fluctuations ignored in the conventional derivation of then
Gross–Pitaevskii equation, merely result in corrections of the form (4.1) is only cor-
rect in the limit when the effect of the mean-field† on the intermediate collisional
states can be ignored.

(c ) Dressing in the intermediate collisional states
To obtain a consistent microscopic approach to the dilute Bose gas, we must there-

fore take into account the modification to the collision dynamics due to the presence
of the mean-field. Such a mean-field ‘dresses’ the intermediate states of a collision,
and, in the case of an infinte gas near T = 0, as is well known from other contexts,
causes a divergence in the effective interaction (termed the ‘dressed’ or quasi-particle
many-body T matrix), when treated in perturbation theory (Nepomnyashchii &
Nepomnyashchii 1978). A more sophisticated analysis shows that this apparent diver-
gence leads to the effective interaction strength in the nonlinear Schrödinger equation
for a homogeneous gas going to zero (Griffin 1993), which indicates that such a theory
should be treated with caution.

In the case of inhomogeneous systems, the many-body T matrix cannot diverge.
As long as the energy spacing of the trap is larger than nU0, the effects of the
condensate mean-field on any of the states can be ignored. We can then state one of
the rigorous conditions for the Gross–Pitaevskii equation to hold, namely that, for
positive scattering lengths, (Proukakis et al. 1997)

nU0 � ~ω. (4.2)

In our opinion, the finite temperature calculations to date based on ignoring these
rather important issues, may encounter problems. One of the ways out of this problem
is to reformulate mean-field theory for inhomogeneous systems in the style of Popov’s
theory (Popov 1987) for the homogeneous Bose gas (i.e. in terms of an effective
condensate density and phase). Part of this work has been achieved by Ilinski &
Stepanenko (1997), but much remains to be investigated. It is quite likely that a
mean-field theory that produces results consistent with experiment can be produced
by a judicious choice of approximations. However, it is still uncertain whether such
a theory can be put on a fully microscopic basis.

5. Conclusions

In this paper we have given an account of the physical processes that have to be
considered in the microscopic derivation of mean-field theory. They lead us to be wary
in the application of the present versions of finite temperature mean-field theory in

† We remind the reader that by mean-field we are referring to the mean-field of both condensed, as
well as excited atoms.
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the analysis of trapped Bose–Einstein condensed gases. Time will tell how effective
they really are in making quantitative predictions. Our account should certainly not
prevent people from making predictions, but should, we believe, alert them to the
potential troubles ahead.
There are a number of people we thank, particularly our collaborators in Oxford, the University
of Utrecht (the Netherlands) and the National Institute of Standards and Technology in the
US. The research of N.P.P. is supported by the Alexander S. Onassis Public Benefit Foundation
(Greece) and K.B. acknowledges financial support from the UK EPSRC.
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